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Chapter 1

Game-theoretic models of learning
and their properties

1.1 Why does learning matter?

The thesis is devoted to the development of one of the most significant approaches
to the analysis of economic behavior in game theory: learning models. While it is not
currently the most popular approach in game theory, it is as old as the game theory
itself1 steadily develops to this day and focuses on the important aspect of strategic
decision-making that other approaches tend to discount.

Since learning is a very polysemantic word in sciences from game theory to machine
learning to psychology, we will restrict our attention to microeconomic models of indi-
vidual learning.

They typically describe a dynamic decision-making process in a repeated game (in a
game-theoretic sense) where the opponents use a set of decision-making principles that
allow them to adapt their strategies to their strategic environment. Naturally, this adap-
tation requires some feedback from the previous play history. By strategic environment
here we mean that the opponents face not the “market” or “nature”, but a set (usually
small, we’ll discuss here only two-player games) of opponents that adapt to players as
well.

This approach addresses game theoretic issues that otherwise are usually overlooked.
First, the behavior of the participants does not necessarily immediately fall into an equi-
librium state in observations or experiments on any dynamic (in particular, repeated)
game. Therefore special, ”tatonnement” models of convergence of behavior are required.
Second, from a purely theoretic point of view, there may be many equilibria in games
themselves, which poses the natural problem of choosing the “best” of them (Van Damme,
1991).

In particular, the criterion for comparing equilibria may be the probability that players
will converge exactly to that equilibria from an arbitrary initial state. To characterize
such equilibria, we need to understand the dynamics of the participants’ interaction and
the rules by which they choose their decisions. All of this requires an explicit model of

1The earliest formal models date back to the 1950s (e.g. (Brown, 1951), (Bush and Mosteller, 1955)),
and informal analysis can already be seen in Augustin Cournot in 1838 (see (Cournot, 1960)).

2



learning and game dynamics for predicting the outcomes of social interaction and finding
the other possible states which could be achieved under certain conditions.

In modern non-cooperative game theory, equilibrium analysis consists of finding the
fixed point of best response functions (Nash equilibria) or, in the case of their multiplic-
ity, such fixed points which have special “desirable” properties2. While the existence,
uniqueness, and properties of equilibrium in a particular economic model may present
considerable technical difficulties for economic theory, it is often implicitly assumed that
for agents in a real economic situation this equilibrium is not only obvious but it is a
result of common knowledge (a consequence of the fact that both the game and the ra-
tionality of the players are common knowledge). The naive justification for this implicit
assumption is that if there is only one equilibrium, “sooner or later” the players will come
to it, and if there are many, then to the “sufficient” of these equilibria (why refinement
is necessary). Explicit modeling of learning in games creates an opportunity to test this
thesis and is an alternative to the axiomatic search for refined equilibria. That is why a
significant part of the literature on learning in games is devoted to the analysis of conver-
gence of various learning rules to equilibrium outcomes and comparing the effectiveness
of different models (learning algorithms) in terms of these predictions.

Another reason to model the learning process itself is the limited computational ca-
pabilities of real players. These limitations cannot be neglected even for games with
complete information (such as chess) and for players capable of trying a significant num-
ber of continuations of any game position (such as modern supercomputers). One obvious
possible solution is to observe the behavior of human players, isolate the basic regularities
of their play, map it into heuristics and suboptimal criteria, and finally transfer the latter
into formal learning rules. This approach, in a sense, violates the assumptions about the
”rationality” of the player, but instead, with minimal assumptions, it allows imitation of
”observable behavior” with some approximation. In the case of laboratory experiments,
an additional test is possible: is the model that the researcher builds consistent with
how the participants themselves motivate their actions? Not least of all the interest in
such models and related to empirical (first of all, experimental) studies. They convinc-
ingly show that, in a number of cases, real people do not behave in the way predicted
by classical solutions such as Nash equilibrium. Thus, in experiments with the “beauty
contest” games (Nagel, 1995) and “ultimatum” (Güth et al., 1982) people regularly and
significantly deviate from a single equilibrium even when the game is repeated a suffi-
ciently large number of times and the stimuli in the game constitute a meaningful part
of their income. Individual learning models are characterized by the ability of players to
update their behavior from round to round because each round must account for strategic
uncertainty and new information to help resolve it.

The first chapter covers several issues in sequence. The section 1.2 and 1.3 focus on
why the literature abounds in a large number of models instead of focusing around a
limited standard set. In particular, the section 1.2 introduces several classifications in
use, the elements of which make up the structure of chapter one. Next, the section 1.3 is
devoted to the class of rational models, and section 1.4 to boundedly rational models with
their properties and behavior. The necessity of the existence of sophisticated boundedly
rational models is introduced in the subsection 1.3.5 on Bayesian learning, and section

2This is called “refinement” of equilibria (Van Damme, 1991)
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1.5 demonstrates examples of such models and presents the class of models proposed by
the author.

1.2 Classification

There is no single and well-established approach to classify different learning models
3((Marimon, 1996), (Nachbar, 2020), (Fudenberg and Levine, 2009), (Fudenberg and
Levine, 2016)), so the process of classification is itself an additional exposition tool to
understand and present different results.

First important division - whether the algorithms are deterministic or stochastic. In
both cases, we may have “best” 4 response, but there are differences. The deterministic
player must choose a single currently best response. A stochastic player may deviate,
being “currently the best action” implies only a higher probability of playing this action,
not certainty. Naturally, we can easily add randomness to the deterministic algorithm
and, conversely, make a previously stochastic algorithm always play the most currently
preferred action without randomization. While one might think that therefore the distinc-
tion is not important, we will see that it is the most important quality for the equilibrium
convergence results.

A distinction that is important is between “rational” algorithms – those that use
all currently available information and in some sense optimally respond to it and those
that due to internal or external restrictions cannot respond optimally and therefore are
“bounded rational” (Marimon, 1996). Generally “rational” algorithms are deterministic,
but there are some exceptions. With some caveats, we can give as examples of rational
learning “multi-armed bandit”, Bayesian learning, and fictitious play with no memory
boundaries (we will explain these models in greater details below).

With regards to bounded rationality, this model class can be further split by what
is importantly bounded in the model. Typical examples here are the computational
resources of the player and the length of memory, as well as uncertainty in the goals or
purposes of the opponent. Chess gives us a vivid example of computational limitations:
real players, including machines, cannot calculate all the possible continuations and find
the optimal move with certainty in every given position. Chess is still playable and
learnable because for a learning model the raw number of moves can be more or less
important depending on the heuristics. Heuristics allow us to calculate only a small
number of moves after the most promising continuations, thus decreasing the number of
calculations required. We illustrate the general principles of such models with an example
of a standard reinforcement learning model.

Bounds of memory capacity are the simplest to implement in an algorithm – just
assume that players “forget” everything that happened a long time ago, and their strategy
depends only on the results of the few recent rounds. This assumption can be justified in a
non-stationary environment because as the environment changes with time, recent events
follow the actual environment better than older events. In particular, we can interpret
classic psychological finding – Ebbinghaus forgetting curve ((Ebbinghaus, 1885/1974) via

3we will interchangeably call them “algorithms” as well
4the best response is the strategy which produces the most favorable outcome for a player, taking

other players’ strategies as given (Fudenberg and Tirole, 1991) p. 29
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Table 1.1: Navigator by model classification

Learning rule Response principle Beliefs/reinforcement5 Model parameters
Original
formulation
of model

Cournot
dynamics ,
subsection 1.3.3

Deterministic,
response to
previous move

Belief based - Cournot (1838)

fictitious
play,
subsection 1.3.3

Deterministic,
response to
empirical frequencies

Belief based
The memory
attrition parameter

Brown (1951)

Bayessian
learning,
subsection 1.3.5

Deterministic,
response to
empirical frequencies

Belief based
depends on
model specifications

Ramsey (1926)

A model of a multi-armed
bandit, subsection 1.3.2

Deterministic,
response to
empirical frequencies

Belief based
Discount factor,
the utility of
experimentation

Robbins (1952)

Calibration, subsection 1.4.1
Stochastic, response to
empirical frequencies

Reinforcement
based

- Foster, Vohra (1998)

Directional
learning,
subsection 1.4.2

Stochastic,
response to
reward

Both Depends on the of the model Selten, Stoecker (1986)

Reinforcement
learning,
subsection 1.4.3

Stochastic,
response to
reward

Reinforcement
based

Memory attrition parameter,
cut-off parameter,
parameter
of local experimentation

Roth, Erev (1995)

Experience-weighted
attraction Learning
(EWA), subsection 1.4.5

Stochastic,
response to
reward

Both

Discounting,
strength of experience,
hypothetical payoff weight,
attraction sensitivity,
”shape” of the previous attraction

Camerer, Ho (1999)

(Murre and Dros, 2015)) as an adaptive mechanism that discounts rare random experience
and reinforces common and important experience. Among examples of such models are
also bounded-memory fictitious play and Cournot best response models.

Goal uncertainty, for example, means that the player does not know the payoff matrix
(whether the opponent values outcome A above or below the outcome B). It is similar to
the uncertainty of the opponent’s reaction to the player’s actions when the player does
not know, how the future opponent’s actions depend the current player’s actions (for
example whether the opponent will cooperate in response to cooperation).

Further, we can introduce the following distinction: in one case player treats the
opponent’s actions as a “sample” that is essentially random and does not account for the
actions of the player, in another player can affect what information about the opponent
and own future actions will be revealed. The latter category includes such models as
Experimental Weighted Attraction (EWA).

After a short description, we will present the models in the following order: we will
begin with rational models, first against a passive opponent, the consecutively more and
more complex models against an active opponent, culminating in Bayesian learning, its
advantages, and disadvantages. In particular, a number of results on the impossibil-
ity of convergence to Nash equilibrium are presented and, as a consequence, appearing
of other theoretical criteria (e.g. Hannan consistency) is discussed. Then we will dis-
cuss bounded rational rules: calibration, directional learning, reinforcement learning,
Experience-weighted attraction, and I-SAW. Both sections begin from a statistical, not

5These concepts represent two different ways to process information about events happening in-game,
we discuss them in detail in the next section
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entirely game-theoretic basis to underline the particularities of game-theoretic learning.
Finally in the third section, we going to cover sophisticated learning topics, such as strate-
gic learning and strategic teaching. We discuss there why standard theoretical criteria
are not quite suitable for analyzing such topics and what criteria can be used to develop
a theory of learning and to create new models.

1.3 Basic models of rational learning in games

1.3.1 Notation and definitions

Two players 6 play a repeated game, where every iteration (stage, round, period) -
the finite static normal form game G = ⟨I, S, {u}, T ⟩, where I = {1, 2} – set of player
(with number I = |I|), S = S1 × S2 – players’ strategy profiles are Cartesian products
of the finite sets of their pure strategies, Si = {si1, si2, . . . , siJ}, i = {1, 2}. Further,
{u} ≡ {u1(S), u2(S)} are payoff functions for each player is defined on S, and T < ∞ is
the number of periods (rounds) of the finite repeated game, with typical period t. Mixed
strategy σi of each player i is a probability distribution on the set Si; it prescribes to each
player i a probability σi(sij) to play her pure strategy sij ∈ Si. Set of all mixed strategies
i forms J − 1 dimensional simplex with a typical element σi.The set of mixed strategies
of each player includes the set of pure strategies. In a repeated context, it determines
the vector of frequencies with which each pure strategy is chosen, [pti1(si1), . . . , p

t
iJ(siJ)],

although
∑J

j=1 p
t
ij = 1, pij ∈ σi. The set of mixed strategies of each player naturally

contains the set of pure strategies at σi(sik) = 1, sik ∈ Si. For a one-period game, the
expected payoff of player i is defined as

Ui(σ) = Eσ(ui(σ)) =
∑
si∈Si

ui(s1, . . . sI)
I∏

i=1

σ1(s2)σ1(s2)

where the strategies of the players are assumed to be independent. Payoffs for player 2
are determined similarly.

The sequence of strategies chosen by the players in a dynamic game is called the
history of the game at time t, and is denoted by ht, where ht = {s1, s2, . . . , st} and
st = {st1, . . . , stI}. Mapping ξi : h

t → ∆Si, determining which of the pure strategies player
i should choose in response to the observed history of the game is called a behavioral
strategy of player i. All subsequent definitions naturally generalize to behavioral strategy
profiles ξ.

Strategy σ̄i in a one-period game is called best response to the profile σ−i if Ui(σ̄i, σ−i) ∈
maxσ′

i∈∆Si
Ui(σ

′
i, σ−i). The set of all best replies of player i to strategy profile σ is denoted

by Bi(σ), and the set of all the best replies in the profile σ is B(σ) =
∏

i∈I Bi(σ). If the
best reply is a mixed strategy, then each pure strategy σ̄i, to which it attaches a positive
probability, should give the same expected utility against σ−i. Otherwise, reducing the
weight to the less advantageous of the pure strategy would yield a higher expected utility,
and σ̄i would not belong to B.

6For simplicity, we are limited to models with two players and the same number of J strategies,
although in most cases they are summarized on any finite number of players and an unequal number of
strategies.
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A Nash equilibrium is such a profile of mixed strategies σ∗ that is a mutual best
reply, i.e. σ∗ ∈ B(σ). In equilibrium, there are no incentives for any of the participants
to unilaterally change their strategies. Nash’s theorem states that in any finite non-
cooperative game with compact strategy spaces and upper semi-continuous best replies
such equilibrium (in pure or mixed strategies) necessarily exists.

1.3.2 Optimal play against Nature: the model of a multi-armed
bandit

To illustrate the statistical learning task and its properties in games, Let’s start with
the degenerate case of game learning — learning in game against “Nature.” In the
theory of games, the key difference between “ nature ” and other players is that it does
not respond to the actions of others and has stationary strategies. “One-armed bandit”
is a slot machine with a handle and reels, that draws at random a sequence of values
of which the player receives a prize. Because the expected winnings of such a game are
negative, the machine “loots” the player, hence the name.

Now let’s imagine that a player sees several such automates in front of her (that’s
why the bandit “multi-armed”, sometimes the name is shortened to simply ”bandit prob-
lems” (Bergemann and Valimaki, 2008)), that are known only that the expected value
from each hand may not be equivalent to the others. How to build the sequence of hand
choices? Each of the machines should provide independent from the others and time
permanent expected payoff (i.e. stationary), which is unknown to the player for any of
the slot machines. The information that is available to the player appears as a result
of experimentation - when a player pulls a handle, she observes the result. However,
this information is not given for “free”, otherwise the player would be unlimited in ex-
perimentation. There is something called exploitation-exploration trade-off which is a
critical trade-off between what frequency player need to choose for the hand with the
highest expected payoff from those already tried, and the frequency of choosing yet of
unused arms, i.e., getting new information. The decision to use a new arm is associated
with the risk that new will be worse than the best of those about which the information
has already been accumulated. For example, if there are ten arms and information has
already been collected about nine arms, the expected value on the remaining arm is a
priori equal to the average (we have no reason a priori to assume it is better or worse
than others), while outcome from the best of of the nine investigated arms is distributed
as a maximum of nine such independent averages. If there are enough arms, then by
trying only some of them, we risk never try the best one. But brute-force search of all
the arms is suboptimal since each new one (as expected) adds less expected value than
from the already used best one.

If the arms are independent and the distribution of outcomes for each of them is
stationary, then such model is sufficient to determine the “best solution” found back in
the (Gittins, 1979). At each move, there is the so-called Gittins index 7. Strategy “Select
the arm with the highest current index” minimizes future regret (formally defined as the
difference between the payoff on the best and used hand) from not using other hands.

Formally, this index (the notation follows (Bergemann and Valimaki, 2008)) can be

7We can draw an analogy with the Sprague–Grundy function in combinatorial games
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defined as follows. Consider the decision problem on an infinite horizon with discrete-
time t = 0, 1, . . .. At each moment it is necessary to choose between K arms, denote
this choice at. Action at = k results in payoff with the same indices, xk

t . This payoff
is random and is defined by the realization of a random variable Xk

t . The sequence of
choices can change the state of the system, denote this state by st. Then the distribution
of Xk

t is representable in the form of F (·; st), where independence of the arms means
that F k(·; st) = F k(·; skt ). The transition function between states is st+1 = φ(xk

t ; st). We
assume that the state variable can be decomposed into K components independent of
the other hands, i.e. for all k, skt+1 = skt if at ̸= k and skt+1 = φ(xk

t ; st) if at = k.
Then the Gittins index for the time moment τ is defined as

g(skt ) = sup
τ≥2

Ex[
∑τ−1

t=1 β
tXk(skt )]

Ex[
∑τ−1

t=1 β
t]

where τ is the current round, β is the discount factor, and Xk(skt ) is the payoff of
state skt . This is the expected utility normalized by the discount factor from the choice of
a given arm, where utility is calculated by taking into account the change in utility from
experimentation. As we note below, the issue of evaluating the utility of experimentation
remains relevant to contemporary literature as well.

However, this index can be difficult to calculate, for which the new approximate
methods and variations of the problem statement are being developed, such as richer
description (context) of states St (survey is represented in (Bubeck and Cesa-Bianchi,
2012)).

The discussion about learning cannot end with this model because it is poorly appli-
cable for game situations with an active opponent reacting to the player’s actions. You
can’t always count on your opponent to play one or the other action (giving different arm
gains) independently from the actions of the player herself. That is, the distribution of
the values is not only nonstationary but also dependent on the previous actions of the
player, which excludes the applicability of successful “multi-armed bandits” solutions in
the game with an opponent who is not, in game-theoretic terms, “Nature”.

1.3.3 Fictitious play, the first classical algorithm

Fictitious play is a learning rule first described by George Brown (Brown, 1951), who
introduced this somewhat obscure but established term. In this family of models, each
player assumes that the opponent plays a stationary (possibly mixed) strategy and best
response to the empirical frequency of the opponent’s strategies. Each participant looks
at a history that has already been played and acts solely based on these observations,
without taking into account the possibility of an opponent’s reaction. Depending on the
precise definition of “empirical frequency” and “best response” are possible very different
algorithms with different properties, so we discuss only the most basic results.

We begin our consideration of the fictitious play with its simplest variant and, at
the same time, with historically the first model of learning dynamics in which players
respond to each other’s actions: with the dynamics of the best response in the Cournot
model. In this classic problem there are two firms, knowing each other’s costs and market
demand, simultaneously determine volumes the output on which their profits depend.
In each period of the repeated game, two firms observe the output decisions made by
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both players and set their output on the level corresponding to the best response to the
opponent’s decision in the preceding period.

Cournot dynamics (best response)

As the simplest example of this behavior, we can consider the degenerate case of a
fictitious play, and at the same time historically the first example of learning dynamics
in which players respond to actions each other. In the original work of (Cournot, 1960),
Cournot was not primarily interested in finding the equilibrium known now as a Cournot-
Nash equilibrium, but an adaptive process of mutual “adjustment” of the strategies of
the two firms, competing in terms of output in a particular market (in Cournot’s book
— in the mineral water market). If the output of the two firms is denoted by s1, s2,
and the utility function by ui(s1, s2), i ∈ {1, 2}, then the best response function is —
Bi(s−i) = argmaxs̃i ui(s̃i, s−i). The standard case is, that the objective function u(·, s−i)
is strictly concave on the opponent’s strategy. Starting with any profile of strategies
s0 = {s01, s02}, Cournot dynamics assumes that both participants choose the best response
to the opponent’s strategy chosen on the previous move, i.e. sti = Bi(s

t−1
−i ). Due to the

concavity of the objective functions, the best response curves decrease by the opponent’s
strategy and intersect in one point, which guarantees the uniqueness of the mutual best
response (equilibrium). Such dynamics are, of course, very “myopic”: players in it react
only to the opponent’s behavior in the previous period, without trying to anticipate
her actions. An extension of the Cournot dynamics, taking into account not only the
opponent’s last move but also the whole history of the game, would be the stationary
fictitious play model.

Stationary fictitious play model

Two players play a repeated game G = ⟨I, S, {u}, T ⟩, and each has J strategies
Si = {s1i , . . . , sJi }. In addition, the initial weights are set or “counters” κik for each
strategy k of the player i. In the process of creating the history of the game ht, where
t ∈ 1, 2, . . . T statistics of what actions your opponent has chosen in previous periods are
collected. Players simultaneously choose their strategies, observe each other’s decisions,
after which they update their beliefs (how the opponent will play) by adding 1 to the
“counter” κt

ik of that strategy st−ik, that the opponent chose during this period t = 1, 2 . . .:

κt
ik(s

t
−ik) = κt−1

ik + b, b =

{
1, if s−ik ∈ st−i

0 if s−ik ̸∈ st−i

(1.1)

In the Cournot dynamics, player i believed her opponent would choose the same
strategy as in the last period. In this, more general case, the belief i that player −i will
play the strategy s−ik at time t is defined as the relative weight of this strategy in the
empirical frequencies of past the actions of the player −i:

γt
ik(s

t
−i) =

κt
ik(s

t
−i)∑J

j=1 κ
t
ij
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In the end, player i chooses her own reaction 8, i.e. best response on her current
beliefs of how her opponent is playing:

BRt
i(γ

t
i) ∈ arg max

{sik∈Si}
E
(
ut
i(s

t
ij, s

t
−i) | γt

i

)
.

Talking about the properties it is worth starting from that the fictitious play converges
to the Nash equilibrium in any zero-sum game (Robinson, 1951), in any non-degenerated
game 2 × 2 (Miyasawa, 1961), in any game solved by the iterative method of excluding
strictly dominant strategies (Nachbar, 1990). If fictitious play converges to the profile
of pure strategies for all players — this profile will be a Nash equilibrium, also if for all
players empirical frequency distributions γt

i converge, then the profile of the strategies,
to which they converge, is the Nash equilibrium. When there is a strict Nash equilibrium
in play, then this equilibrium is an absorbing state of fictitious play (Nachbar, 1990),
(Fudenberg and Levine, 2009).

Several examples of play for FP

Let’s look at a few examples of how a fictitious play works. As a first example, take
the simplest game of “Matching pennies”, presented in the Table 1.2. In this game, two
players at the same time choose Head or Tail. If they chose the same thing, the winner
is the first, and if different sides of the coin, the second.

Table 1.2: Matching pennies game

Head (H) Tail (T)
Head (H) 1; -1 -1;1
Tail (T) -1;1 1;-1

Let’s start with any profile of initial (zero period) counters, for example, κ1 = (1, 2)
and κ2 = (3, 1), that is, the first player may consider the move “Tail” of the second one
as more probable, and the second one considers the probable move “Head” of the first.
Then in the first period, both participants play BR and weights become (1,3) and (3,2).
Following this, player 1 should play H, and player 2 — T until experience convinces her
that the former is more likely to be played by T, i.e. to the weights (3,4), when she will
have to change strategy on H under the assumption that the opponent changes strategy
only then, when the new strategy is strictly better than the old one. In response, player 1
will accumulate evidence in favor of her opponent playing H (starting with (1,5) and until
(6,5), when she herself will have to change the strategy to H, and so on. In a long enough
perspective, the empirical frequencies of such game converge to a single Nash equilibrium
{[1/2, 1/2], [1/2, 1/2]}. In this example, the concept of fictitious play is unobjectionable.

However, there can also be complications. The convergence of empirical frequencies
does not always capture the essence of the game well. Consider the game “Rock-Paper-
Scissors” as an example. In this classic game participants simultaneously choose one of
the items: rock beats scissors, paper beats rock, scissors beat paper (in other words,
the relation between the strategies is non-transitive) — and the winner takes the payoff

8Note that it is allowed that there is not the single best response - in this case the solution is chosen
arbitrarily.
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Table 1.3: Rock-Paper-Scissors game

Rock (R) Scissors (P) Paper (S)
Rock (R) 0,0 1,-1 -1,1
Scissors (S) -1,1 0,0 1,-1
Paper (P) 1,-1 -1,1 0,0

of this game period. The only Nash equilibrium in mixed strategies is {1/3, 1/3, 1/3},
(Table 1.3).

It is not difficult to see that in this case, the participants will respond to each strategy
by changing the best response as soon as the player’s action frequencies incentivize her
opponent to switch to a winning strategy (rock beats scissors, paper wins the rock...).
In this case, the empirical frequencies will indeed converge to equilibrium, but players’
average payoffs will differ by players with each cycle of strategy change and the difference
will increase sharply with increasing period, which we don’t expect in a “equilibrium”
game. Note that in this game the empirical frequencies will converge to equilibrium
not only if the one-period game equilibrium (mixed Nash equilibrium) is played. When
players change strategy each time to the best response to their own strategy of the
previous round, during this one of them all the time will win, the other will lose, but the
empirical frequencies will correspond to the equilibrium.

A stronger criterion would be the requirement of convergence of joint empirical fre-
quencies to the profile of Nash strategies, in this game requirement is met if each position
in the winnings matrix occurs with the same frequency (1/9) in the game history ht.
However, even for such a criterion, it is possible to create a simple deterministic rule
that does not correspond to the expected understanding of “convergence”, e.g., play
(R,R) → (R, S) → (R,P ) → (S,R) . . . , (P, P ) → (R,R). Based on the law of large
numbers, on the round numbers t = 1, 10, 20 . . . position (R,R) should occur no more
than 1/9 times, which obviously will not be fulfilled.

1.3.4 Definitions of convergence: which criterion is the right
one?

In the example of fictitious play, we see the problem of the balance of convergence
definition according to which there are several ways to formulate significantly different
definitions. Weaker definition corresponds to almost any learning rule, and stronger
one corresponds to none, and at first glance, there may not seem to be much difference
between the two (Nachbar, 2020). The example of a coordination game (matrix on the
table 1.4) can serve as a vivid illustration of the difficulty of finding such a balance. If
players begin to repeat a stage game Nash equilibrium play in which they play (A; A) in
odd periods and (B; B) in even periods, then the system converges (trivially) to a Nash
equilibrium in repeated play. Nachbar (2020) notes that: “strictly speaking, we get a
different Nash equilibrium depending on whether the starting date of the continuation
game is odd or even.

The convergence of the fictitious play in the general case is not guaranteed. A classic
example is given in (Shapley, 1964), to which corresponds, for example, the payment
matrix presented in the table 1.5. This game is a variant of the Rock-Paper-Scissors
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Table 1.4: Coordination Game (“Battle of the sexes”)

A B
A 1,1 0,0
B 0,0 1,1

game (1.3), which, however, becomes a nonzero-sum game. This slight difference leads,
however, to a significant shift in the rate of accumulation of weights corresponding to
the empirical frequencies of the best response: If the initial weights are attributed to
participants playing any of the strategy profiles, lying outside the main diagonal, then
the dynamics of the fictitious play will attribute to them following the cycle(T,M) →
(T,R) → (M,R) → (M,L) → (D,L) → (D,M) → (T,M) . . . Each next part of the
cycle will require more and more time, but these dynamics never converges.

Table 1.5: Shapley game

1 ⧹ 2 L M R
T 0,0 1,0 0,1
M 0,1 0,0 1,0
D 1,0 0,1 0,0

Let’s imagine now that one of the players consistently is making moves on the cycle
R → S → P → R . . . in RPS. His/her astute opponent, having figured out this simple
rule of updating strategies, will be able to always win by shifting his/her own strategy
in the right direction also acting on cycle P → R → S → P . Such a strategy in terms
of empirical frequencies is corresponding to the Nash equilibrium mixed strategy, but
the average payoff is −1 for the first player and 1 for the second player. (i.e. formally
there is a convergence to equilibrium, but in fact, the first player behaves myopically and
constantly loses)

In this case, it is convenient to define convergence in terms of stability of average
payoffs rather than in terms of frequencies. If the average winnings of a pair of players do
not change by more than ε, we can consider that it has converged. However, the fact of
convergence itself does not impose restrictions either on the minimum required value of
the average payoff or on the type of opponent. This brings us to the notion of universal
convergence or Hannan consistency (Hannan et al., 1957). According to this criterion, a
player will almost certainly get at least as much utility as she could have gotten if she
had known in advance the frequency of her opponent’s strategies σi (but not their order,
not the strategies themselves on each of their rounds). Technically, it can be defined as:

lim sup
T→∞

(
max
σi

(ui(σi, γ
t
i)−

1

T

∑
t

ui(y
t(ht−1))

)
≤ ε

Where yt : H → R+ is a function of outcomes. Unlike other criteria, universal
convergence allows us to judge the quality of a strategy not by theoretical profiles, but
by observable values — payoffs. In addition, it implies the ability of the algorithm to
play with any type of opponent.
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However, the very fact that the rule converges to an equilibrium outcome may still have
too much space for interpretation. For example, in the Battle of the Sexes game, in Fig.
1.3.4 universal convergence would provide a player with an average payoff of 2, but with
the right alternation of strategies, players could achieve an average of 3. So (Mathevet
and Romero, 2012) took advantage of the observations (McKelvey and Palfrey, 2001)
that learning algorithms poorly predict experimental outcomes, and compared theoretical
predictions, simulation outcomes, and experimental results in terms of mean payoff. An
example of this analysis is shown in Fig.1.3.4.
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Figure 1.1: Comparative dynamics of fictitious play by (Mathevet and Romero, 2012)

In Fig.1.3.4, the left column shows the studied games in matrix form. The sets of all
achievable potential payoff profiles for each of the games are described by closed contours,
presented in the graphs to the right of the corresponding matrix. The second column
contains illustrations including the set of payoffs that dominate the equilibrium payoffs in
mixed strategies according to the folk theorem. The figure in the third column illustrates
the convergence results of the simulated weighted fictitious play, and in the latter —
payoffs distributions from experimental data.

In the last two cases, the circles indicate payoffs with coordinates in the center of
each circle, and the diameters of each circle — the frequencies with which the population
plays the matched strategy profile. For the convenience of comparison, the unit radius
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corresponds to the whole population 9.

A comparison of the empirical frequencies of the average payoffs shows that the
weighted FP converges to results different from the experimental data in both games,
which can be clearly seen in the graph. So for example in the coordination game “Bat-
tle of the Sexes” people tend to coordinate quite quickly and switch between profiles
(A,B), thereby achieving an identical average payoff (with a value equal to 3) for each
participant. In contrast, a pair of “fictitious play” algorithms converge to a less “social”
outcome (A,A), (B,B) in exactly half of the cases (which also demonstrates the sensi-
tivity of dynamics to the choice in the first round or to the original beliefs). Thus, it
can be argued that the relevant models do not describe very well the behavior of actual
subjects especially in forward-looking prediction situations, where nevertheless with the
right incentives the participants perform well. If each player believes that her opponent’s
behavior is described by a sequence of independent and equally distributed multinomial
random variables, and its a priori beliefs with respect to this distribution are described
by the Dirichlet distribution10, then FP corresponds to a more general model - Bayesian
learning (Fudenberg and Levine, 1993) (Nachbar, 2020), which is where we’ll get to.

1.3.5 Bayesian learning

A class of Bayesian learning algorithms is often referred to as ”rational learning“
(Marimon, 1996), since they satisfy the standard axioms of rationality. Assumptions that
specify rational preferences (e.g., Savage’s subjective expected utility (Savage, 1954)),
require from a player consistency of beliefs, including the inclusion of new information in
the old system of beliefs according to Bayes’ rule. However, compliance with some set of
axioms alone cannot guarantee the adequacy of a learning rule.

Bayes’ rule is widely and successfully applied in various fields of statistics, so it may
seem that following it by a rational player is sufficient for successful convergence to
equilibrium (stage game rational behavior). However, the structure of the representations
of the opponent and some details of the algorithm formulation are important for learning,
which leads to paradoxes.

To demonstrate the features of this class of models, let us characterize the essential

9The data in the third column shows the result of 1000 simulations with pairs of algorithms pro-
grammed to play a weighted fictitious play with (ϕ ∈ (0, 1)). Every simulation continued until the
average pair payoff did not change by less than 0.01 in 20 consecutive blocks (In particular, the sim-
ulation is divided into blocks of 100 periods.). The maximum length in each of the runs was set to
100,000 periods, although the median the convergence length did not exceed 16,800 periods for each of
the games. The results, further presented at graphs, are averages, taken for 1000 simulated pairs, for the
last 1000 periods. For the experimental data, the sample size was 60 and 70 participants for each of the
2 games respectively. The data used for illustration shows the relative frequency of each possible payoff
profile in the last 20 periods of the Supergame. Experimental data were collected in two subgroups with
slightly different rules: in the first one, the initial 30 rounds were fixed, and then, starting from the 31st
round, the probability of continuation was 0.9, so the expected length of each the supergame was 40. In
the second one, starting from the first round, the probability of continuation was 0.99, so the expected
length was 100.

10Applies to the discrete case of games with more than two strategies available, in this case the
Multinomial distribution and the Dirichlet distribution form family of conjugate distributions: for the
a priori Dirichlet distribution and multinomial of the likelihood function, the posterior distribution will
also be the Dirichlet distribution.
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determinants of Bayesian learning in the repeated game:

• Each player has an a priori probability distribution with respect to her opponent’s
behavioral strategies.

• Based on the game history available to all players after each period, these beliefs
are updated by Bayes’ rule.

• At each point in time, each player chooses the behavioral strategy that maximizes
her expected discounted payoff in all future periods.

Even without imposing additional assumptions, there are difficulties with the dynam-
ics of two players in a repeated game (primarily in formalizing sets of a priori distri-
butions). However, a number of significant assumptions are usually added to the basic
assumptions, with which we will start considering the dynamics of Bayesian learning.

A Bayesian learning model against a myopic opponent

The basic assumption is that the Bayesian learning algorithm (hereafter, Bayesian
learner) interacts with an environment that is in no way dependent on its actions. 11

This approach can also be motivated as a player’s interaction with the result of the
averaged actions of many other players perceived as averaged social action. That is even
if the agent’s actions i affect the social outcome, as long as her actions do not take
this dependence into account, she can treat the social outcome as an “exogenously given
external world”.

The learning rule under consideration prescribes rational players to update their be-
liefs according to Bayes’ rule as history progresses, and choose the best reply σt+1

i (ht) ∈
Bi(x

t) in any period t, when they have decisions to make. Each t-th payment of player
i depends only on her action sti ∈ Si and on the state of the process xt, for which in
games it is natural to take the profile of opponents’ strategies st−i, so that X = S−i and
u ≡ u(sti, x

t), while the set of pairs itself (sti, x
t) – it’s the history of the game. ht.

As an example, consider a “game with nature” — a coin flip that can be biased,
and where the goal of the participant playing with nature — is to bet on the correct
(more likely) side of the coin. Each such coin toss is a realization of a random variable
X = {0, 1} with binomial distribution and unknown parameter θ (the true bias of the
coin). The player’s goal — is to determine the most likely value θ̂t after the history ht,
which will automatically allow her to choose σt∗ = 0 or 1, depending on whether θ̂t ≷ 0.5.

Let the a priori estimate of the probability of the outcome x ∈ X is Pr(θ), and there
is a sequence of outcomes (tosses) x with a likelihood function Pr(x|θ). Then the a
posteriori value of θ will be determined by Bayes’ rule as

Pr(θ|x) = Pr(x|θ) Pr(θ)∫
Pr(x|θ′) Pr(θ′)dθ′

In the coin flip case, the a priori probability is given by a two-parameter beta distri-
bution, and the likelihood function is given by a binomial distribution, this pair forming

11If such an opponent can take into account only last actions but she is not forward-looking it is often
referred to in the economic literature as “myopic”.
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a family of conjugate distributions: if the a priori distribution is a beta distribution and
the likelihood function is binomial, then the posterior distribution will also be a beta
distribution and the problem is solved analytically (see full description in the appendix).
In our example, the dynamics of the game will look quite simple: the Bayesian learner
should just flip a coin for a long time, updating the beliefs about the parameter of the
beta-binomial distribution, then her prediction the head probability in the limit will con-
verge to the true distribution θt → θ∗, where θ∗ — true value θ (Marimon, 1996). In the
general case, Pr(θ|x) ∝ Pr(x|θ) Pr(θ), and the calculation of the posterior probability
depends on the a priori distribution and its parameters.

Problems of Bayesian learning

Even with opponents playing unconditionally, learning procedures are optimal only if
the agent’s beliefs match the complexity of the environment. You need to have truthful
assumptions in advance about how the “actual” environment is arranged. If this rep-
resentation is simplified, then the agent’s predictions may also be far from correct. For
example, suppose the bias of a coin θ is not constant, but can vary from period to period
(we alternately use two different coins). Bayesian learning rule does not guarantee us
success: let, for example, the sequence of outcomes X = {0, 1} — a simple alternation of
outcomes (0, 1, 0, 1, ..., 0, 1...). Knowing or guessing the rule, it is possible to guess each
successive outcome. But the Bayesian learner would to converge to an estimate of θ = 1/2
for this sequence, which would result in an error half the time. In this example, in form-
ing the a priori probability distribution, the possibility of time-dependent bias (including
”even-numbered — one, odd-numbered — another”) should be taken into account. In
general, however, it is difficult to draw up an exhaustive list of what possibilities should
be considered.

Another problem is caused by the determinism and impossibility of “experiments”.
Consider Bayesian learning in the two-armed bandit problem. On one hand, there is a
coin with probability pof falling out 1 (the other side brings 0), on the other hand, there
is a coin with probability q and we need to maximize the discounted sum of occurring
outcomes. It turns out that even Bayesian learners with any level of sophistication of a
priori beliefs with positive probability converge to the choice of a non-optimal hand in
the given problem (Rothschild, 1974). This happens if the player’s current information
indicates in favor of one hand and she permanently stops choosing the second hand, as
she receives no new information about it. Since one hand is chosen only a finite number
of times, the score q may not converge to its true value and the student continues to
choose the hand with probability p even at p < q.

If even under sufficiently strict assumptions limiting the opponent’s behavior there are
situations in which the Bayesian learner behaves in a non-optimal manner, two questions
remain. The first – if two Bayesian learners play with each other, will they converge to
equilibrium (specifically, Nash equilibrium)? The second question is whether their beliefs
about each other can converge to true beliefs in the limit. We will address these issues
in the next section.
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Bayesian learning in general form

The main difficulties in using Bayesian learning as a universal rule lie in the issue of
how the system of a priori beliefs can be specified.

In general, the player moves from passive learning (where she interacted with an
opponent playing unconditionally) to active learning (allowing that the opponent’s actions
depend in some way on the history of the game). For instance, a sufficiently patient
rational player can maintain infinitely complex strategies (Young, 2004) (p.91), such
as optimal experimentation, pattern recognition, deliberately misleading the opponent,
myopia simulation, etc.

To illustrate these complexities, let us consider a general model of Bayesian learning in
a repeated game, such that participants learn from all stories ht = (s1, s2 . . . st), including
all actions chosen by participants up to and including period t. The set of all possible
finite histories is denoted by H. Recall that the sequence of strategies chosen by the
players in a dynamic two-player game is called the history of the game at the moment
t, and is denoted by ht, where ht = {s1, s2, . . . , st} and st = {st1, . . . , stI}. Mapping
ξi : ht → ∆Si that determines which of the pure strategies player i should choose in
response to the observed game history is called the player’s behavioral strategy i. It is
assumed that each participant at each moment of time has some model of behavior of
her opponents, defined as a mapping from the set of admissible histories into the set of
strategies of her opponents, and denoted by mi : Hi → ∆(S−i). We denote the set of
possible models by Mi, and the set of beliefs that give a positive probability to the set
of possible models Mi — as µi(Mi). It is clear that under some such models the course
of the game will converge to equilibrium (for example, if players are initially convinced
that their opponents are initially playing the same Nash equilibrium). The question
is how wide is the class of such models in which players rationally trained by Bayes’
rule will always converge to equilibrium. This cannot generally be guaranteed, but the
first significant result was Kalai and Lehrer (Kalai and Lehrer, 1993), who obtained the
characterization of the conditions under which the players’ beliefs converge to the true
distributions of the opponents’ behavioral strategies, and, as a consequence, the mixed
strategies of the players converge to Nash equilibrium.

Each behavioral strategy profile ξ(ht) ≡ ξ1(h
t)× . . . ξI(h

t), implemented after history
ht, specifies a well-defined probability distribution on a set of possible histories from the
player’s view i which is denoted by Di(ξi). Beliefs µi are called absolutely continuous, if
for each probability distribution on the set of possible histories Di(ξi) model mi ∈ Mi

could be found such that the strategy prescribed by this model (Denote it as Di(µi, ξi))
specifies the same probability distribution, i.e. Di(µi, ξi) = Di(ξi), and each of the
actually possible histories at the time t these beliefs assign the positive probability.

The main result – if all the strategies ξi(µi), generated by beliefs µ, absolutely con-
tinuous Di(ξi), then these strategies converge to a Nash equilibrium. By convergence
here is assumed such that for each history, the probability distributions given by ξi(µi)
almost surely match with the equilibrium mixed strategies in the given stage game. Proof
of this technically difficult result follows from Blackwell’s approachability theorem (see
(Fudenberg and Levine, 1998)).

The requirement of absolute continuity is nontrivial. Suppose in an infinitely repeated
prisoners’ dilemma both players use a “ grim-trigger” strategy (cooperation until the
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opponent has deceived, and the rejection of cooperation after that) and believe that both
will continue to play this strategy as soon as one of them will deceive. If the player’s
strategies are such that one of them soon is really deceiving, then the strategy of the
grim-trigger is being implemented and beliefs turn out to be absolutely continuous. If,
however, both players never cheat, then they will never have the opportunity to check this
strategy and absolute continuity is broken. Another example for a wider class of games is
provided by (Nachbar, 2005): If in ”matching pennies” two players have constructed some
correct models of behavior of their opponents, then once they recognize their strategies, it
will no longer be advantageous for them to maintain equilibrium strategy given by these
models, which again violates absolute continuity.

In the general case, it turns out to be impossible to construct a class of beliefs al-
lowing to ”learn” parameters of the distribution of the opponent’s true beliefs, and, as
a consequence, converging to an equilibrium regardless of her actions (Nachbar, 2020).
(Based on the same idea for games with uncertainty in payoffs a similar result is obtained
in (Foster and Young, 2001)). To clarify this result, let us first consider another example
(from (Marimon, 1996))

Table 1.6: Play against ”miscoordination
environments” (Marimon, 1996)

A B
s1 1 0
s2 0 1

Let X = {A,B}, the matrix of payoffs is given by the table 1.6, and µi satisfies the
condition of absolute continuity with respect to the family of distributions ν ∈ N . Let
also the process underlying Bayesian learning is the result of the best response of the
player Bi according to her behavioral strategy ξi. Now let’s look at the process of data
generation xt, which prescribes on the best response of the player her opponent to play
a disadvantageous strategy for the player, i.e. Prob(xt = A|xt−1) > 1/2, if σt(xt−1) = s2
and Prob(xt = B|xt−1) > 1/2, if σt(xt−1) = s1. If such a process lies in N , then the
Bayesian learner will be able to ”learn it”, however Bt

i would no longer be the best reply.
With the new B̂t

i let’s bind a new “unprofitable” rule, still from N etc. As a rule, one
cannot ”close” this process, i.e. there is no optimal strategy for all modes of play lying
in N and at the same time remain in this class N , given the “feedback” on the optimal
strategy. In other words, a player may assume that her opponent is not myopic and
change the strategy from s1 to s2, but if the other player is also not myopic (both players
are rational) and is sufficiently patient, then trying to learn the complex behavior of that
opponent leads to complicating that opponent’s behavior. What Young (2004)(p.92)
says about it: ”Indeed, when both actors are rational, the attempt to learn the complex
behavior of the opponent frequently leads to still more complex behavior on the part of
the learner.” and further he notes that for some types of games: ”this interactive effect
yields behaviors that become arbitrarily complex, and are effectively impossible to learn
through the updating of priors”.

The general theorem (Nachbar, 2005) states that it is impossible for a rational learning
strategy to follow three seemingly natural rules simultaneously:
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• learnability i.e. of being able to arrive at a state in which beliefs about the
opponent’s play predict her next move as if the prediction were made under a
known true distribution underlying the opponent’s play

• richness, which means that the beliefs are closed with respect to the type of strat-
egy, that is, if a certain type of strategy is included then together with it all variation
of strategy must be included as well (e.g. all strategies with k-period memory)

• consistency, what means matching the player’s best reply at each moment of the
game to her beliefs.

Following the example given by (Nachbar, 2005) to illustrate these properties, let us
turn to the already mentioned Bayesian interpretation of the fictitious play. If FP player
has a best reply, then all variations of this best reply need to lie in FP strategy space, then
belief set satisfies learnability and richness. However, If a fictitious player is faced with
a situation where it has an equal Prior, such strategies become i.i.d. over actions, which
violate the consistency requirement. This result is robust for any Bayesian learning and
for ε-equilibrium strategies(Nachbar, 2005). It does not in itself imply the impossibility
of learning and says only that the convergent learning algorithm cannot meet all three
above-mentioned properties simultaneously. If we do not assume that the player knows
anything about her opponent’s utility function (this formulation of the learning problem
is called “uncoupled dynamics”), (Hart and Mas-Colell, 2001) shows that convergence
to Nash equilibrium against any arbitrary given learning algorithm is impossible for any
learning rule at all, not only for deterministic algorithms based on Bayes rules.

1.4 Basic models of bounded-learning in games

1.4.1 Calibration

Let us start our discussion of boundedly rational rules with a statistically noteworthy
rule: calibration of predictions. Game learning is closely related to the tasks of predictive
statistics: both weather forecasting and predicting the opponent’s behavior require anal-
ysis of previous experience and can include both point forecasts (”tomorrow it will rain”,
”the opponent will choose a strategy tail”), as well as probabilistic (”the probability of
rain tomorrow is 85%”, ”the best reply is for a given game history will have an 85%
probability of choosing tail””). Is it difficult to get a ”correct” probabilistic forecast to
predict an opponent’s behavior?

Prediction calibration is defined as the correspondence between the predicted proba-
bilities of events and the frequencies with which these events occur (Foster and Vohra,
1998). For instance, if a quarter of the days of the year were rainy, the better the cal-
ibration of the forecast, the closer was the predicted probability of rain to 0.25. Note,
however, that the binary sequence prediction 01010101 can also be well-calibrated by
both with a 0.5 probability prediction of each of the outcomes, and by an accurate de-
terministic sequence. On the other hand, a pure-calibrated forecast 10101010, although
wrong every time, captures the essence of the process (alternation of zeros and ones) bet-
ter than a forecast which would predict the probability of one being 0.33. These problems
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are similar to the problems of determining the convergence of empirical game frequencies
to equilibrium frequencies.

Nevertheless, it is not unhelpful to ask whether it is possible to construct a prediction
rule that will be well-calibrated to any future paths of the progress of the predicted
sequence? The answer for deterministic rules is simple - no, for a deterministic rule,
no matter how it is complex, there will always be a sequence on which it is poorly
calibrated. The answer for rules with randomness already depends on the source of the
predicted sequence: It could be Nature or an adversarial opponent with the possibility
of selecting the next element of the sequence, knowing the prediction for that element
and the intermediate case when the opponent can change the sequence as the game
progresses, but only knows the distribution of predictions, not the exact predictions for
the next turn. As it might be expected, in a game against an omniscient opponent the
ability to randomize doesn’t help, and the multi-armed bandit task shows that in a game
against Nature the answer is positive. For the adaptive opponent a nontrivial result is
obtained (Foster and Vohra, 1998) that it is possible to construct such a prediction rule
for an arbitrary sequence generated by a non-omniscient opponent that this rule will be
well-calibrated. Alternative proof for the existence of calibrated randomized rules can be
obtained using the minimax theorem (for details see. (Foster and Vohra, 1997)). This
result also gave rise to a question, and how to check whether it was not some Forecast
charlatan not possessing any information about the data generation process, but using
this rule to create the visibility of good calibration (for details, see the section about
calibration in the review (Nachbar, 2020)).

1.4.2 Directional learning

Directional Learning - one of the most common ways to assign bounded rational
learning rules with a probabilistic action function (Selten and Stoecker, 1986), (Selten
and Buchta, 1999) and (Selten et al., 2005). A classic example of directional learning
- target shooting. When there are several attempts the shooter can estimate in which
”direction” the result of the shot would be better and for the next shot to shift point of
aiming in the same direction (therefore ” directional ”).

Formally, you can give a qualitative description of three conditions. (Selten, 2004):

1. Discrete time for learning is required t = 1, 2, . . . , T .

2. Should exist a valid parameter υt which player chooses in each period.

3. A feedback should be configured to correct the value of the parameter regarding
the previous choice.

For example, consider the prisoners’ dilemma game. By backward induction (D,D) is
the only equilibrium in a repeated game with a finite number of rounds (we will call the
whole set of rounds a supergame). However empirically, participants in experiments with
this game tend to cooperate in a significant number of rounds.

C D
C 5, 5 0,7
D 7, 0 2,2
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In terms of the directional learning model (Selten and Stoecker, 1986), it’s called silent
cooperation. Participants are ready to cooperate up to the last round in supergame, while
the opponent does not deviate. But each of the participants naturally predicts that at
the end of the opponent will reject. So she is forced to decide which moment she should
deceive to do not regret about missed benefit. When choosing a round in the supergame
in which the player starts to deviate from cooperative behavior on her own, she will be
guided by the experience gained from previous rounds. The intended period of deviation
start will be the parameter of directional learning in this game.

Since directed learning is a qualitative rather than quantitative theory, for each indi-
vidual game it corresponds to some stochastic functions, prescribing the player, instead
of randomly choosing to choose more often something that shifting the player in the right
direction. Examples of more specific specifications of directed learning could be found in
– (Selten and Buchta, 1999), (Cason and Friedman, 1999), (Sadrieh, 1998).

In directional learning, the rule of action probability choice depends on the parameter,
which determines the direction in which the player moves. What if this direction cannot
be specified explicitly? Reinforcement learning is an important class of bounded-rational
models that is appropriate for such a case.

1.4.3 Reinforcement learning

A natural source of non-economic inspiration for game theory is biology, which pro-
vides two developed paradigms of adaptation. One of them is borrowed together with
the name in evolutionary game theory, but we will consider the second one, which con-
siders adaptation not between generations of organisms, but for the same organism –
reinforcement learning. It has its origins in the work of Ivan Pavlov on the formation
of conditional reflexes, but in a century of active research has transcended the limits of
actual biology and has become an integral part of computer science and psychology. It
is based on the simple psychological principle of feedback, i.e. the choice and fixation in
the observed behavior of such actions, to which the response from the external environ-
ment gives positive stimulation. Positive stimulation may not be sufficient on its own,
but it can play a significant role in conjunction with beliefs. E.g. Selten et al. (2007)
provide evidence from lab experiment with allocation passengers among two routes that
both information and experience are relevant in the long run in the context of learning.
At the same time, while modern psychology is skeptical of behaviorism, which takes this
model as the sole basis of all psychological processes, on the contrary, it is an actively
developing area of research in machine learning (for a more detailed introduction to this
area we recommend (Sutton and Barto, 2018)).

Historically, reinforcement learning has its origins in the famous of the psychology
of the ”law of effect” (Thorndike, 1911), (Thorndike, 1927): “Responses followed by a
satisfying effect are strengthened and likely to occur again in a particular situation but
responses followed by a dissatisfying effect are weakened and less likely to occur again
in a particular situation”. The formulation of the reinforcement learning model itself is
attributed to psychologists Bush and Mosteller (Bush and Mosteller, 1955). In economics,
the application of reinforcement learning models has its origins in the work of (Erev and
Roth, 1998).
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Model

The reinforcement learning model on repeated games G = ⟨I, S, {u}, T ⟩ 12 is defined
as follows. Each player has J strategies Si = {s1i , . . . , sJi }. Similar to the fictitious play
model, for each player’s are defined: the propensity qtij for period t, initial propensity q0ij,
and updating rule:

qt+1
ij = qtij + (u(sj)− umin(s))

where (u(sj)−umin(s)) is normalized utility from the strategy used u(s) over minimal pos-
sible utility umin(s). If the strategy has not been chosen in this round, then the propensity
to play remains unchanged. The pobability to choose a strategy in the following round
is defined, like in the fictitious play, as a relative propensity:

ptik =
qtik∑J
j=1 q

t
ij

Note that, unlike the fictitious play, the propensity to play one or another particular
strategy is influenced not only by the success of the strategy in the past but also by the
magnitude of the gain. Thus, the learning curve will initially have a steep incline but
will become more flatter with time (with increasing t). The value of initial propensities is
the only parameter in the classical formulation of the model, but in numerous extensions
additional ones often appear. Here are some natural examples (first appearing in the
Behaviorist literature of the thirties, e.g. (Watson and Kimble, 2017), or more modern
example of a formal model – (Erev et al., 1995)):

• Cutoff parameter ϑ (Erev et al., 1995): probabilities pij < ϑ are assumed to be
zero. If low probabilities are indistinguishable from zero for the player, significantly
improves convergence (in the baseline version of the model, the number of rounds
needed to achieve an equilibrium outcome may exceed 10,000).

• The Local Experimentation or Generalization parameter. Parameter, which affects
the magnitude of the increase in propensity to play a particular Strategy: of the
entire value x, only a fraction 1− ϵ is adding to the chosen strategy. The remainder
ϵ is adding to the closest strategy. Thus ϵ is interpreted as local experiments or
errors. Strategies must be interpreted in one dimension: price, quantity, amount
given to the other player, etc.

• The recency or memory attrition parameter: players tend to attach more impor-
tance to recent events. The effect has long been discussed in the decision-making
literature, e.g., in (Estes, 1964). Its application was so popular that there were
even several models based on it (see sample-based model (Chmura et al., 2012) for
belief-based one, and individual evolutionary learning (Arifovic and Ledyard, 2004)
for reinforcement-based). The core idea of such models that agents draw a sample
that is based on the past and react according to those policy function (e.g. best
reply). But they are generally covered by the later idea of FP or RL with memory
parameter. Formally it is given as a 1 − ϕ-adjusted propensity (where ϕ small).
This parameter ensures that new observations contribute to the overall learning

12Note that it can also be specified for a wider class of games and situations
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process, even if there is already extensive experience. In the classical model, inertia
increases with increasing propensity: it takes more new observations to notice that
the environment has changed.

Properties of the reinforcement learning model

In 2x2 constant sum games with two players and a single equilibrium, reinforcement
learning converges to the value of the game (Beggs, 2005). Reinforcement learning and
stochastic FP converge, but not necessarily to the Nash equilibrium, in the 2x2 games,
zero-sum games, and coordination games (Hofbauer and Hopkins, 2005), with a higher
convergence rate for the stochastic versions of FP than for reinforcement learning (Benaim
and Hirsch, 1999).

To illustrate the complexity of interpreting the dynamics of reinforcement learning,
we again use data from (Mathevet and Romero, 2012), which provides a comparison of
theoretical prediction, two-player simulation results with ”reinforcement learning” as a
base, and the performance of participants playing the experiments in terms of average
payoff. A detailed description of the experimental design and computer simulations can
be found in subsection 1.3.4
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Figure 1.2: Comparative dynamics of reinforcement learning by (Mathevet and Romero,
2012)

In the figure 1.2, as in the previous example, the left column represents the investi-
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gated games in matrix form. The sets of all achievable average payoffs for each of the
games are described by closed contours shown in the graphs to the right of the correspond-
ing matrix. The second column on the left represents the set of payoffs that dominate the
equilibrium average payoffs in mixed strategies according to the folk theorem. The graph
in the third column shows the convergence of the simulation of a pair of reinforcement
learning algorithms against each other, and in the last column, the – payment distribu-
tions for the experimental data. In the latter two cases, the circles denote the payments
with coordinates in the center of each circle, and the diameters of each circle are – the
frequencies with which the population plays the corresponding profile of strategies. For
ease of comparison, the unit radius corresponds to the entire population.

It can be observed that in the first game, the experimental results do not combine
with the prediction of a simple reinforcement learning rule. In the second game ( “Ulti-
matum”), reinforcement learning predicts half of the experimental results. In this case,
the rationality constraints in the algorithm capture the tendency of participants to play
a fairer outcome (2,2) and reinforce it. This can be interpreted as a step towards a
more accurate description of the behavior of individuals, albeit one that requires more
fine-tuning.

1.4.4 Weighted Fictitious Play

Before proceeding to describe hybrid models, it is useful to consider the way in which
a deterministic algorithm turns into a stochastic algorithm. In the extension of classical
FP – the Weighted FP model (Cheung and Friedman, 1997), each player i has three
counters κt

is, one for each opponent’s action s ∈ {0, 1, . . . , J}. Starting with κ0
is = 0, at

each time period t ∈ {1, 2, . . . T}, these three counters are updated (enlarged or not). We
enlarge the k-th counter κt

ik by 1 when the opponent’s observed action st−1
−i is equal to

this k:

κt
ik = κt−1

ik +

{
1, if st−1

−i = k

0, if st−1
−i ̸= k

∀k ∈ {0, 1, . . . , J} .

Belief γt
ij of player i that his/her opponent (−i) will choose action k at period t is defined

as the relative weight, i.e, the empirical frequency of this action:

γt
ik :=

κt
ik∑J

j=0 κ
t
ij

∀k ∈ {0, 1, . . . , J} .

Unlike deterministic FP that reacts only to the most probable action of the opponent,
the Weighted FP algorithm reacts to random actions, appearing with probabilities γt

ik.
Further, a weighted fictitious play initiates a test to determine which of the γ is imple-
mented in other words run hypothetical scenario the result of which is already a specific
action of the opponent s̄t−i(γ). Finally, the algorithm plays

BRt
i(γ) ∈ argmax

{sik}
E
(
ut
i(s

t
ij, s

t
−i) | s̄t−i

)
.
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1.4.5 Experience Weighted Attraction Learning (EWA)

Both approaches: both fictitious play and reinforcement learning appear to be re-
flecting some properties of real-world learning, but not describing the whole thing. The
fictitious play pays close attention to the opponent’s behavior, but not how (presumably)
the best response to that behavior is really good. In contrast, reinforcement learning
does not monitor an opponent’s behavior and focuses on the success of one’s own actions.
Therefore, it seems natural to search for an approach that combines them in a single
algorithm. One such algorithm, called “experience weighted attraction” (usually abbre-
viated EWA) (Camerer and Ho, 1999), allows for both fictional play and reinforcement
learning and linear combinations thereof as special cases. This comes at the cost of a
large number of parameters, causing criticism about the overfitting of such models.

The response to such criticism was the model STEWA (Ho et al., 2007), which is
fixing part of the parameters at a “reasonable” level. Experience weighted attraction
learning is one of the first models to incorporate elements of reinforcement learning and
fictional play with psychological interpretation. Having simple models inside EWA is
also convenient for practical reasons because they can automatically be tested inside the
model and if they are more accurate, EWA should show it. Moreover, similarities and
differences of simple models also become possible to observe in the data.

Formal model description

The underlying model assumptions resemble reinforcement learning. Consider the
standard environment of a repeated game G = ⟨I, S, {u}, T ⟩ with t ∈ 1, 2, . . . T peri-
ods and J strategies. In addition, introduce a parameter normalizing the experience of
previous periods N(t) (at an initial value of N(0)) and attractions At

ij(sij) instead of
propensities. pij. Previous experience is discounted by a factor of ρ and the parameter
N(t) follows the rule:

N(t) = ρN(t− 1) + 1, t > 1

At
ij(sij) is ”attraction” of the j-th strategy of player i at period t (with initial attrac-

tions A0
ij(sij)). Counting and updating Aij includes three components: discounting the

old attraction ϕN(t−1)At−1
ij (sij) (ϕ – discount parameter), taking into account the result

of the current round uij(s
t
ij, s

t
−ij) and the normalization of experience N(t).

At
ij(sij) =

ϕN(t− 1)× At−1
ij + [δ + (1− δ)× I(sij, sti)]× uij(s

t
ij, s

t
−ij)

ρNi(t− 1) + 1
.

where I is an indicator of the strategy used, δ determines the comparative weight of
payoffs from selected and unselected strategies in the attraction function. For example,
if δ = 0 then they will be counted as in the reinforcement learning model (consider
the chosen strategy), and if δ = 1 then as in the fictitious play model (consider all
strategies). A0

ij(sij) and N(0) allow us to adjust the speed of learning in the first rounds
of the game or the asymmetry in the attractiveness of the initial strategies, reflecting the
initial knowledge of the player.

Similar to reinforcement learning, the probability of choosing strategy j in round t is
given by an attraction-dependent objective function.
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The original article (Camerer and Ho, 1999) suggests several ways to introduce prob-
ability, but the main one is logistic:

pt+1
ij =

eλA
t
ij∑k

w=1 e
λAt

iw

In total, the EWA model has 6 parameters (see table below), so that it can easily “fit”
many possible trajectories, as confirmed by simulations (Salmon, 2001). Despite a large
number of parameters, EWA performs better than its simpler counterparts, even with
penalties imposed on their number.

ρ - discounting ϕ - discounting
N(0) - strength of experience A0

ij(sij) - “form” of previous attraction

δ - weight of hypothetical payoff λ - attraction sensitivity

Recall again, but in tabular form, the relations between EWA and its nested models
(note that at δ = 1 the parameter N(0) does not matter and can be any).

ϕ δ ρ N(0) Model
1 1 1 - Fictitious play
0 1 0 - Best response by Cournot

ϕ ∈ (0, 1) 1 ϕ - Weighted fictitious play
ϕ ∈ [0, 1] 0 0 1 Cumulative reinforcement
ϕ ∈ [0, 1] 0 ϕ 1

1−ϕ
Average reinforcement

It is worth stating that the mere presence of different parameters makes interpretation
difficult. Confusion arises also because the parameters are in non-trivial relations with
each other, and their numerical values can be misinterpreted. For instance, we can think
that a model changing parameters imitates the player’s game, whereas the player does
not do any complicated calculations, and if we ask him to describe what he does, we
will find parameters like sensitivity to reinforcement (lambda) in a parametric model
like EWA that have no analogs in the human description. However, apart from the
attractions updating, the model does not change anything within the game, parameter
values are fixed. The whole space of parameters implies that the player-human is simply
a realization of one of the values of this set. Thus the average values of the parameters
in the population are the subject of interest of the researcher having such a model in her
toolkit.

26



Битва полов 

A

B

A B

1,1 2,4

1,14,2

Ультиматум

A

B

2,2 2,2

0,03,1

Народная теорема STEWA

Народная теорема

Экспериментальные 
данные

Экспериментальные 
данные

0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0

Payoff 2

P
a
yo

ff
1

0.0 1.0 2.0 3.0 4.0

0.0

1.0

2.0

3.0

4.0

Payoff 2

P
a
yo

ff
1

0.0 1.0 2.0 3.0 4.0

0.0

1.0

2.0

3.0

4.0

Payoff 2

0.0 1.0 2.0 3.0 4.0

0.0

1.0

2.0

3.0

4.0

Payoff 2

P
a
yo

ff
1

STEWA

0.0

1.0

2.0

3.0

4.0

Payoff 2

P
a
yo

ff
1

0.0 1.0 2.0 3.0 4.0

0.0

1.0

2.0

3.0

4.0

Payoff 2

P
a
yo

ff
1

Battle of Sexes

Ultimatum

Folk theorem

Folk theorem

EWA

EWA

Experimental data

Experimental data

Figure 1.3: Comparative dynamics of EWA by (Mathevet and Romero, 2012)

To illustrate the complexity of interpreting experience weighted attraction learning
dynamics again we use the comparison of the average payoffs from the simulation results
of the two EWA players and the results of the participants of the experiments from
(Mathevet and Romero, 2012). A refined description of the experimental design and
computer simulations can be found in the subsection 1.3.4.

In the figure 1.3, as in the previous example, the left column represents the investigated
games in matrix form. Sets of all possible payoffs for each of the games are described by
the closed contours shown in the graphs to the right of the corresponding matrix. The
second column contains illustrations that include the set of achievable average payoffs
that dominate the equilibrium average payoffs in mixed strategies according to the folk
theorem. The graph in the third column shows the convergence of pairs of experience
weighted attraction (EWA) algorithms, and in the last column, the – average payoff
distributions for the experimental data. In the last two cases, the circles indicate the
payoff of the strategy profile corresponding to the center of each circle. The diameters of
each circle reflect the frequency with which the population plays the appropriate strategy
profile. For the convenience, the unit radius corresponds to the entire population.

The simulation results, as in the case of previous algorithms, show the mismatch with
experiments. From a theoretical point of view experience weighted attraction learning
could produce a prediction close to reinforcement learning, with parameters δ = 0, how-
ever, at medium parameters it shows dynamics, more like an FP. This result can also
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be interpreted as excessive complexity since the algorithm is more tend to use too many
parameters for a fairly narrow space of strategies.

Self-tuning EWA (STEWA)

Modified model self-tuning EWA (Ho et al., 2007) contains only one parameter and
the rest are “self-tuning”. Initial parameters (N(0), A0

ij) are equated to 1 because they
reflect a characteristic of the strategic situation rather than the learning process. Of
the remaining two discounting parameters (ϕ, ρ) have been consolidated into ϕi(t). The
following remain unchanged δ and λ. The accounting of previous experience in the
modified model is given by the change detector – a function ϕi(t) based on the “Surprise
index”. It reflects the difference between the players’ actions throughout the game and
the most recent ones.

Let’s define a vector of average game history of opponents players, containing the
relative frequency of playing their J strategies, its element is:

ηij(t) =

∑T
t=1 I(sij, s−i(t))

t
.

The latest factual history of the game forms another vector rij(t) = I(sij, s−i(t)).
“Surprise index” Ωi(t) is the sum of squares of deviations between these two vectors:

Ωi(t) =
J∑

j=1

(ηij(t)− rij(t))
2

It takes values between zero (stable environment) and two (maximum unexpected
outcome). In other words, the surprise index reflects the degree of change in the most
recent observation relative to a stable story.

The change detector function is now set as:

ϕi(t) = 1− 1

2
· Ωi(t)

Here is an example from the original article (Ho et al., 2007). Suppose your opponent
consistently plays the same strategy for several rounds, and then suddenly changes it. In
this case. ϕi(t) equals to

2t−1
t2

. This reflects the fact that the more repeated choices – the
greater the surprise will be the appearance of a different strategy (for t = 2, 3, 5 and 10
the value would be .75, .56, .36, and .19).

The attention function, as another self-adjusting parameter, has a similar, psychologically-
based nature. Her idea is, that the player’s attention shifts to a strategy that has not
been chosen, but the hypothetical payoff on it exceeded the current payoff. Attention
function δ(t) is equal to one if ui(sij, s−i(t)) ≥ ui(t) and zero in the opposite case.

The STEWA model can be considered as the culmination of classical game learning
model theory, but it does not answer many natural questions and leaves a wide field for
further research. One such issue is the formal definition and study of experimentation
in games, a behavior that is not locally optimal, but is optimal in the long run because
it allows one to learn more about the opponent’s behavior and response to the player’s
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actions. As we have seen throughout the review, positive results in learning theory point
in one way or another to the need for such behavior to achieve equilibrium. However, it
is difficult to investigate because in order to notice experimentation as a deviation from
optimal behavior, one must determine which behavior is optimal within the model. For
different models, the optimal (and thus experimental) behavior may be different even for
the same dataset.

1.5 Sophisticated learning

In this section, we will discuss potential learning models that would better account
for cognitive aspects of behavior. In subsection 1.5.1 we will discuss the role of pattern-
recognizing rules among Bayesian rules and among universally consistent rules. In sub-
section 1.5.2 we will discuss the scope of sophistical learning models – where they can
be helpful, what limitations they have, and some examples of their application. In sub-
section ?? we will discuss the extension of this type of model from 2-by-2 normal form
games to games with continuous actions and will give some examples.

1.5.1 Why we need another class of models?

One of the main questions before the theory of learning in games was to determine
whether two agents that do not know anything about their opponent’s beliefs but can
adapt over time converge to some kind of equilibrium and what kind if so. The rationality
of the players in the equilibrium theory is an assumption that allows incorporating the
reaction of the opponent to possible outcomes (we know that the opponent will act
according to hisrational preference and thus can calculate its reaction).

From the (Foster and Young, 2003) (and also as we could ascertain from the section on
Bayesian learning) we know about the limitation of the rationality concept. Young (2004)
summarised it as “even when players are perfectly rational and arbitrarily forward-looking
there may be no priors that permit them to learn Nash equilibrium behavior”.

The same can be said about socially preferable outcomes, for example, Goyal and
Janssen (1996) found that even in a 2-by-2 pure coordination game rationality alone
cannot result in coordination. Thus, rational learning has interesting alternatives such
as statistical learning that allows some form of deviation from the deterministic best
response (usually by experimenting that was discussed in subsections devoted to the
bandit model and convergence)

They are universal but simultaneously are very myopic, in situations where human
subjects could rapidly recognize the Pareto-efficient outcome (like 010101 pattern in the
Battle-of-Sexes game) they will respond only with an effective empirical frequency (ran-
domizing equally 0 and 1), not with an efficient pattern.

The literature (Fudenberg and Levine, 1998)[p.337] describes it as “myopic learning
procedures, not in the sense that players do not care about the future but in the strategic
sense of lacking concern about the consequences of current play for opponent’s future
action”. As we could see previously (see fig. 1.3.4, fig. 1.2) human subjects are able to
coordinate.

“Another conclusion one might draw from our analysis is that the perfect rational-
ity paradigm is not very powerful when it comes to the study of interactive learning
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processes. Instead, one could resort to models of boundedly rational behavior or evolu-
tionary models.” Here Goyal and Janssen (1996) express a similar sentiment to us and the
(Fudenberg and Levine, 1998)[p.4]: “our own views about learning models tend to favor
those in which the agents, while not necessarily fully rational, are nevertheless somewhat
sophisticated; we will frequently criticize learning models for assuming that agents are
more näıve than we feel is plausible”.

We can also notice that despite behavioral genesis some rules such as simple RL
on actions also do not produce a socially preferable outcome. Fudenberg and Levine
(1998)[p.302] claims the need to have “sophisticated learning in the sense that they ex-
plicitly attempt to detect patterns” and lists sources of such rules as (i) direct inclusion of
behavioral strategies, (ii) conditioning on certain events, and (iii) using internal “experts”
as they are usually defined in CS literature.

Let’s note that this list is not mutually exclusive and we can have an algorithm that is
mixing recognition CDC only on even rounds and CCD only on odd rounds (that is a mixe
of (i) and (ii)). However crude exploiting of patterns is very limited in its expressiveness.
E.g. if a model can only decide how to alternate between two options according to odd or
even periods, it can be successfully implemented in the battle of the sexes (BotS) game
but not in prisoners dilemma (PD). 13

To be useful at least partially in addition to the pattern processing ability model
should be able to avoid losing cycles, one simple way is described in Fudenberg Levine
p.138 “Random behavior can prevent the player from being “manipulated” by a clever
opponent”.

Thus a behavioral model can be useful if it manages the trade-off between pattern
recognition and manipulation avoidance (including the ability to adapt). Let’s take a
closer look at what kind of patterns we can consider.

1.5.2 Examples and limitations

As a basic example of sophisticated learning, let’s look at an (Fudenberg and Levine,
1998) example of strategic teaching. Consider the game matrix from the table 1.7, and
suppose we have an FP column player and a sophisticated row player. A sufficiently
patient row player can shift the equilibrium result to a Pareto efficient one. If she for a
long time chooses U despite the fact that it is dominated by D, then the outcome will
switch to {U,R}.

Table 1.7

L R

U 1,0 3,2
D 2,1 4,0

Here in 1.7 one of the players is assumed to be myopic but for example, in the Battle
of the Sexes game, both players may ”try to teach” and in that context, teaching may

13If the model only imitates an opponent’s action then vice versa it is useful only in the PD game. If it
combines both and switches between them then there are trajectories where it is useless for both games.
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also be perceived as “being stubborn”. If both players may be teaching and compete in
doing it, we have a situation where we have two instances of the teaching process and
one occasion of competition. Naturally, such a problem is considerably harder to model,
estimate, and work with in general than a problem where who is teaching and who is
learning is clear. To some extent, it is an open question e.g. is strategic teaching possible
in the game 1.8.

Table 1.8: Extended Dilemma

C D

C 4,4 -1,12

D 12,-1 1,1

Here comparing between s1 = {Ct=1, Dt=2, . . . , Ct=n} and s2 = {Ct=1, Ct=2, . . . , Ct=n}
first is preferable both in social and private outcome U(s1, s1) > U(s2, s2). But how let
you opponent know that your action directed to alternating and not to defecting?

We have already mentioned that myopia can be interpreted as a lack of forward-
looking behavior. However in practice when we faced the ability to process the simple
patterns it is hard to disentangle two of these concepts. Let us consider the situation in
the strategy of conditional cooperation also called ”Tit-For-Tat”.

If a player starts to play tit-for-tat and the second player does likewise, there could
be several interpretations: (1) the second player expects the first one to cooperate only
if the second will cooperate itself and thus second cooperates in response because it is
profitable (2) the second player has a bunch of patterns including “cooperate if opponent
cooperates” and such pattern is reinforced by successful application.

To some extent those narratives are the same, the second being more typical for the
evolutionary approach. But we can also frame it as the agent evolves “experts” within
itself and thus learns patterns.

This approach does not suffer from the drawbacks of pure teaching because here to
learn both players need only an option to “defect if opponent defects” as a negative
incentive.

To illustrate it we can consider two situations. In the first player with a tit-for-tat
strategy faces a similar opponent and they converge on cooperation. In the second tit-for-
tat player faces a simple RL. RL is known to “experiment” and will frequently deviate,
but will get defection (thus, punishment) in return.

In a significant share of cases (25%) according to our simulations (see fig. 1.4) simple
RL opponents are successfully taught. The ability to counter different types of forward-
looking opponents alleviates the induction problem if the number of types is limited.
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Figure 1.4: Convergence in average payoff for pair of different type of players: Tit-For-Tat
automaton vs RL

Here the axes show the average payoff of a pair of players. 1000 pairs of players are taken such that
the first pair is TFT and another is action RL. The length of the game is broken into blocks, with each
block lasting 200 rounds. They interact until either the block limit (50) runs out or the deviation of the
average payoff taken among each next 5 blocks is less than 0.01. The color shows whether the players
have converged or not (100% black means the deviation is smaller than the delta; In other cases the
darker the less the oscillation of the payoffs). The size of the circle represents what percentage of the
population has converged in a small radius around it. So in this picture 24% of the players have winnings
greater than 2.5. and 76% less.

For practical purposes, one source of this limitation is the natural limitation of human
opponents’ computational resources a la level-k or cognitive hierarchy theories (Stahl,
1993). In general, repeated strategies of fixed length were proposed to narrow the in-
duction problem in evolutionary games via Deterministic Finite Automata (DFA) a long
time ago Aumann (1987).

While in evolutionary games each automaton was identical to the player, later in
learning literature automata were proposed as a building block for the learning model
by (Hanaki, 2004) and later was implemented in algorithm by (Ioannou and Romero,
2014). Algorithms such as strategic EWA show the ability to react to some patterns of
coordination (see 1.5).

Even though this is the only currently successful example of applying DFA to learning
models, it is not without downsides. In particular, it requires pre-learning that makes it
similar to neural nets and prevents fast transfer or immediate adaptability. Models use
presimulation to set initial weights, finding initial propensities demands a lot of rounds
simulated before play (the median convergence length was close to 16,800 periods for each
of the games).

Moreover, there are strict requirements for action space. As a consequence of which
when we discuss only games with 2 actions for both players it produces 26 versions of
strategies (24 ∗ 2− 6 = 32− 6 where 6 are trivial versions and 2 possible starting states).
For a game with 3 actions, it becomes close to 39 ∗ 2.

Thus this model can be applied only to small-dimensional discrete action games.
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Figure 1.5: Convergence in average payoff for pair of different type of players by Mathevet
and Romero (2012)

However, evidence of strategic teaching was investigated by (Duersch et al., 2010)
and on the continuous action games in particular in the oligopoly game experiment,
however, the behavior exhibited by subjects there has not been represented by any known
theoretical learning model.

The authors in the experiment use human’ play against several different computer al-
gorithms that are trained according to one of the classical rules (fictitious play, trial & er-
ror, best response, imitation, reinforcement learning, EWA). The experimental setting in-
cluded the linear inverse demand functionmax{109−Quantity, 0} and constant marginal
cost, MC = 1. The actions (quantities) are at the interval – quantity = a ∈ [0, 100]. Util-
ity of each player is:

u(ai, a−i) := (max{109− ai − a−i, 0} − 1) ∗ ai
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Table 1.9: Prominent outcomes by theory

ai a−i ui u−i

Cournot-Nash equilibrium 36 36 1296 1296
Symmetric competitive outcome 54 54 0 0
Symmetric collusive outcome 27 27 1458 1458
Stackelberg leader outcome 54 27 1458 729
Stackelberg follower outcome 27 54 729 1458
Monopoly solution 54 0 2916 0

People manage to take the oligopoly from Cournot to Stackelberg by ”unraveling”
the process underlying your opponent’s decision and using his rules. Why is behavior in
an oligopoly not represented by a sophisticated learning model? One answer lies in the
difficulty of representing strategies since in this setup the set of actions is a continuum.
Typically, when trying to construct them, the complexity begins at the action represen-
tation stage because it is necessary to specify all variants of actions as a discrete set with
steps (for example for the interval from 1 to 100 it can be a set of the sequence 1,2...100).
However, in the latter, the algorithms learn too slowly and rather randomly (obviously
this is far from human dynamics, as (Duersch et al., 2010) have shown.

1.6 Chapter summary

We usually assume rational preferences and rational behavior in game theory (i.e.
multi-person decision theory), because making a decision rationally implies, in some
sense, a maximization problem over several possible alternatives. Even when we know
that there is more to be said about the underlying decision process, like small probabilities
being undervalued in decisions under risk, the generic utility function can be a useful
approximation. For example, von Neumann-Morgenstern utility function can fit the data
better than the prospect theory (Harless and Camerer, 1994). This intrinsic attractiveness
of general solutions explains why theorists spend so much time and effort to discover the
general model of rational learning that would fit desirable theoretical properties such as
universal consistency or convergence to Nash equilibrium. But results are a mixed bag -
there is a following sequence of results from D.Foster’s seminar14 on whether convergence
to Nash equilibrium can be achieved: Yes: You can learn NE from a grain of truth (Kalai
and Lehrer, 1993). No: Not exactly. (Foster and Young, 2001) Yes: Via exhaustive
search-i.e. very slowly (Foster and Young, 2006) No: (Hart and Mas-Colell, 2003) Yes:
via public, deterministic calibration which is very slow (Kakade and Foster, 2008). For
all but the smallest games, it is basically no. As we can see from this example, the theory
is not very coherent in what happens in particular cases.

With too many agents individual input of each of them becomes relatively smaller.
At some point they don’t account for their own effect on the public outcome, so we can
treat public outcome as an external state of the world. As (Marimon, 1996) points out:
“In competitive environment an individual agent does not affect the social outcome and,
therefore does not create strange correlations out of his optimal actions and mistakes”.

14http://deanfoster.net/calibration handout.pdf
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However with a few players the situation is qualitatively similar to two-player case and
all problems of induction remain.

In this chapter, we have discussed the consequences of these results that purely de-
terministic rationality cannot guarantee good theoretic properties. Naturally, learning
theory turned away from simple deterministic algorithms, such as fictitious play, and
towards simple randomized algorithms such as stochastic and weighted fictitious play al-
gorithms. Such rules are appealing because they can play equally well against anyone and
due to of randomisation prevent rough manipulation by opponent. However, they can
be too crude and fail to detect even the simplest regularities in the opponent’s behavior.
Sometimes (as in zero-sum games) it is a minor issue but for coordination games this ap-
proach is significantly limited. While in zero-sum games patterns can be expected to be
short-lived (being predictable will be punished), coordination should reinforce patterns,
because being predictable helps to coordinate actions.

A possible trade-off between preventing manipulation on the one hand and pattern
recognition on the other could be models involving complex cognitive strategies and ran-
domization simultaneously such as (Ioannou and Romero, 2014) or (Spiliopoulos, 2012).
The application of these models in broader than 2-by-2 games contexts, however, has
some coincidental and empirical issues. Conceptually they are limited by the size of the
subjects’ computational capabilities. Empirically it is difficult to distinguish them from
their simpler analogs.

However, behavioral models in the context of the question at hand have an advantage
because they are limited from above in the complexity of the options they consider (after
all, we are talking about players-humans whose beliefs about their opponent’s behavior
are limited by computational capabilities). In our view, research design could be aimed
at investigation these intrinsic properties of players, rather than just predicting their
behavior in a limited number of cases. For example, we don’t know what human subjects
will play in a game from tab. 1.8, nor whether there is a repeated strategy with a limited
memory length capable of inducing coordination in a given game (and thus leading to
a Pareto optimum). At the end, examining these properties of players in the context
of learning refers to the big question of how agents process information in general. We
believe that the small answers to these questions in learning that we raise here and in
subsequent chapters are also small answers to big questions around information design in
economic mechanisms per se.

Supplementary

1.6.1 Bayesian algorithm play against nature

Consider a numerically classical example of Bayesian learning — estimation a coin
bias from observations. Let’s formulate the game: ”Nature creates a coin with head
probability r and then flips that coin N times, generating a series of ”actions”. The
second player guess one side before each action, take a 1 if successful, otherwise 0.

The series of values generated by Nature is described by the Bernoulli distribution,
and the likelihood function is described by the binomial distribution with parameters θ:
r which reflects the probability of occurring heads (coin bias), h - the number of heads
in N periods and the number of tails in t (respectively, N = t+ h).
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That is, the probability that r takes some known value, given the known data x(h = H)
takes the form Pr (h = H | r, h+ t) =

(
h+t
h

)
rh(1− r)t, where H is the eagle dropout

value in the general population.
We denote the a priori distribution of the probability density function r by g(r) ∈

[0, 1]. The posterior distribution is obtained by the product of the likelihood functions
r → p(t, h|r) and the a priori distribution g(r) normalized by the probability of head
occurring p(t, h) in n trials:

p(r|t = T, h = H) =
p(t, h|r)g(r)∫
p(t, h|r′)g(r′)dr′

=
Pr(h = H|r, h+ t)g(r)∫ 1

0
Pr(h = H|r′ , h+ t)g(r′)dr′

Putting the binomial distribution formula into the posterior distribution formula, we
obtain:

f(r|t = T, h = H)) =

(
h+t
h

)
rh(1− r)t∫ 1

0

(
h+t
h

)
r′h(1− r′)dr′

=
rh(1− r)t∫ 1

0
r′h(1− r′)tdr′

This distribution, conjugate a priori for the binomial of the distribution, is called
the beta distribution, in the general case its denominator is expressed through the beta
function:

f (r | t = T, h = H) =
1

B (h+ 1, t+ 1)
rh(1− r)t.

When the player maximizes her payoff, she should to guess the side with the higher
(according to the a priori distribution) probability. Assume that the a priori distribution
r is– uniform on [0, 1], i.e. g (r) = 1. Let’s take the following game state as an example,
let n = 10, h = 7, that is, the coin is tossed 10 times and there are 7 heads. What to
choose on the 11th move? Since h and t are integers, and the a priori distribution is —
uniform, the formula for the posterior beta distribution can also be written in factorials:

f (r | t = T, h = H) =
(t+ h+ 1)!

h!t!
rh(1− r)t =

(10 + 1)!

7!3!
r7(1− r)3 = 1320r7(1− r)3

f (r | H = 7, T = 3) reaches its peak at r = h / (h + t) = 0, 7 The expected value
of r for a given distribution is:

E(r) =
∫ 1

0

r ∗ f(r|H = 7, T = 3)dr =
h+ 1

h+ t+ 2
=

2

3

This means that the Bayesian player, choosing the most likely event, must bet on the
head in period 11.
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